Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Cell Infect Microbiol ; 12: 1049065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605129

RESUMO

Background: RH5 is the leading vaccine candidate for the Plasmodium falciparum blood stage and has shown impact on parasite growth in the blood in a human clinical trial. RH5 binds to Ripr and CyRPA at the apical end of the invasive merozoite form, and this complex, designated RCR, is essential for entry into human erythrocytes. RH5 has advanced to human clinical trials, and the impact on parasite growth in the blood was encouraging but modest. This study assessed the potential of a protein-in-adjuvant blood stage malaria vaccine based on a combination of RH5, Ripr and CyRPA to provide improved neutralizing activity against P. falciparum in vitro. Methods: Mice were immunized with the individual RCR antigens to down select the best performing adjuvant formulation and rats were immunized with the individual RCR antigens to select the correct antigen dose. A second cohort of rats were immunized with single, double and triple antigen combinations to assess immunogenicity and parasite neutralizing activity in growth inhibition assays. Results: The DPX® platform was identified as the best performing formulation in potentiating P. falciparum inhibitory antibody responses to these antigens. The three antigens derived from RH5, Ripr and CyRPA proteins formulated with DPX induced highly inhibitory parasite neutralising antibodies. Notably, RH5 either as a single antigen or in combination with Ripr and/or CyRPA, induced inhibitory antibodies that outperformed CyRPA, Ripr. Conclusion: An RCR combination vaccine may not induce substantially improved protective immunity as compared with RH5 as a single immunogen in a clinical setting and leaves the development pathway open for other antigens to be combined with RH5 as a next generation malaria vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Camundongos , Ratos , Animais , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum , Anticorpos Antiprotozoários , Vacinas Combinadas
2.
Clin Med Insights Oncol ; 15: 1179554921993069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633477

RESUMO

BACKGROUND: Myxoma virus (MYXV) is an oncolytic poxvirus that lacks the gene for 1 of the subunits of ribonucleotide reductase (RR), a crucial DNA synthesis and repair enzyme. The overexpression of RR has been implicated in the invasiveness of several cancers, including soft tissue sarcomas (STS). The purpose of the study was to investigate the oncolytic efficacy of MYXV in STS with different levels of RR expression. METHODS: The oncolytic effect of recombinant MYXV was evaluated in 4 human STS cell lines, LS141 (a dedifferentiated liposarcoma), DDLS8817 (a dedifferentiated liposarcoma), RDD2213 (recurrent dedifferentiated liposarcoma), and HSSYII (a synovial sarcoma) using infectivity and cytotoxicity assays. Following the overexpression of RRM2 by cDNA transfection and silencing of RRM2 by siRRM2 in these STS cell lines, the RRM2 expression levels were analyzed by Western blot. RESULTS: We observed a direct correlation between viral oncolysis and RRM2 mRNA levels (R = 0.96) in STS. Higher RRM2 expression was associated with a more robust cell kill. Silencing the RRM2 gene led to significantly greater cell survival (80%) compared with the control group (P = .003), whereas overexpression of the RRM2 increased viral oncolysis by 33% (P < .001). CONCLUSIONS: Our results show that the oncolytic effects of MYXV correlate directly with RR expression levels and are enhanced in STS cell lines with naturally occurring or artificially induced high expression levels of RR. Myxoma virus holds promise in the treatment of advanced soft tissue cancer, especially in tumors overexpressing RR.

3.
Sci Rep ; 11(1): 4502, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627686

RESUMO

DPX is a novel delivery platform that generates targeted CD8 + T cells and drives antigen-specific cytotoxic T cells into tumours. Cancer cells upregulate phosphatidylserine (PS) on the cell surface as a mechanism to induce an immunosuppressive microenvironment. Development of anti-PS targeting antibodies have highlighted the ability of a PS-blockade to enhance tumour control by T cells by releasing immunosuppression. Here, C57BL/6 mice were implanted with HPV16 E7 target-expressing C3 tumours and subjected to low dose intermittent cyclophosphamide (CPA) in combination with DPX-R9F treatment targeting an E7 antigen with and without anti-PS and/or anti-PD-1 targeting antibodies. Immune responses were assessed via IFN-γ ELISPOT assay and the tumour microenvironment was further analyzed using RT-qPCR. We show that the combination of DPX-R9F and PS-targeting antibodies with and without anti-PD-1 demonstrated increased efficacy compared to untreated controls. All treatments containing DPX-R9F led to T cell activation as assessed by IFN-γ ELISPOT. Furthermore, DPX-R9F/anti-PS treatment significantly elevated cytotoxic T cells, macrophages and dendritic cells based on RT-qPCR analysis. Overall, our data indicates that anti-tumour responses are driven through a variety of immune cells within this model and highlights the need to investigate combination therapies which increase tumour immune infiltration, such as anti-phosphotidylserine.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade/imunologia , Proteínas E7 de Papillomavirus/imunologia , Fosfatidilserinas/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/imunologia
4.
Oncoimmunology ; 9(1): 1782574, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32923145

RESUMO

The induction of tumor-targeted, cytotoxic T lymphocytes has been recognized as a key component to successful immunotherapy. DPX-based treatment was previously shown to effectively recruit activated CD8+ T cells to the tumor. Herein, we analyze the unique phenotype of the CD8+ T cells recruited into the tumor in response to DPX-based therapy, and how combination with checkpoint inhibitors impacts T cell response. C3-tumor-bearing mice were treated with cyclophosphamide (CPA) for seven continuous days every other week, followed by DPX treatment along with anti-CTLA-4 and/or anti-PD-1. Efficacy, immunogenicity, and CD8+ T cells tumor infiltration were assessed. The expression of various markers, including checkpoint markers, peptide specificity, and proliferation and activation markers, was determined by flow cytometry. tSNE analysis of the flow data revealed a resident phenotype of CD8+ T cells (PD-1+TIM-3+CTLA-4+) within untreated tumors, whereas DPX/CPA treatment induced recruitment of a novel population of CD8+ T cells (PD-1+TIM-3+CTLA-4-) within tumors. Combination of anti-CTLA-4 (ipilimumab) with DPX/CPA versus DPX/CPA alone significantly increased survival and inhibition of tumor growth, without changing overall systemic immunogenicity. Addition of checkpoint inhibitors did not significantly change the phenotype of the newly recruited cells induced by DPX/CPA. Yet, anti-CTLA-4 treatment in combination with DPX/CPA enhanced a non-antigen specific response within the tumor. Finally, the tumor-recruited CD8+ T cells induced by DPX/CPA were highly activated, antigen-specific, and proliferative, while resident phenotype CD8+ T cells, seemingly initially exhausted, were reactivated with combination treatment. This study supports the potential of combining DPX/CPA with ipilimumab to further enhance survival clinically.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Linfócitos T CD8-Positivos , Feminino , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos , Camundongos Endogâmicos C57BL
5.
Hum Vaccin Immunother ; 16(9): 2007-2017, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530723

RESUMO

The small hydrophobic (SH) glycoprotein of human respiratory syncytial virus (RSV) is a transmembrane protein that is poorly accessible by antibodies on the virion but has an ectodomain (SHe) that is accessible and expressed on infected cells. The SHe from RSV strain A has been formulated in DPX, a unique delivery platform containing an adjuvant, and is being evaluated as an RSV vaccine candidate. The proposed mechanism of protection is the immune-mediated clearance of infected cells rather than neutralization of the virion. Our phase I clinical trial data clearly showed that vaccination resulted in robust antibody responses, but it was unclear if these immune responses have any correlation to immune responses to natural infection with RSV. Therefore, we embarked on this study to examine these immune responses in older adults with confirmed RSV infection. We compared vaccine-induced (DPX-RSV(A)) immune responses from participants in a Phase 1 clinical trial to paired acute and convalescent titers from older adults with symptomatic laboratory-confirmed RSV infection. Serum samples were tested for anti-SHe IgG titers and the isotypes determined. T cell responses were evaluated by IFN-γ ELISPOT. Anti-SHe titers were detected in 8 of 42 (19%) in the acute phase and 16 of 42 (38%) of convalescent serum samples. IgG1, IgG3, and IgA were the prevalent isotypes generated by both vaccination and infection. Antigen-specific T cell responses were detected in 9 of 16 (56%) of vaccinated participants. Depletion of CD4+ but not CD8+ T cells abrogated the IFN-γ ELISPOT response supporting the involvement of CD4+ T cells in the immune response to vaccination. The data showed that an immune response like that induced by DPX-RSV(A) could be seen in a subset of participants with confirmed RSV infection. These findings show that older adults with clinically significant infection as well as vaccinated adults generate a humoral response to SHe. The induction of both SHe-specific antibody and cellular responses support further clinical development of the DPX-RSV(A) vaccine.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Animais , Anticorpos Antivirais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Linfócitos T
6.
Front Immunol ; 11: 264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210956

RESUMO

Many pathogens use the same immune evasion mechanisms as cancer cells. Patients with chronic infections have elevated levels of checkpoint receptors (e.g., programed cell death 1, PD1) on T cells. Monoclonal antibody (mAb)-based inhibitors to checkpoint receptors have also been shown to enhance T-cell responses in models of chronic infection. Therefore, inhibitors have the potential to act as a vaccine "adjuvant" by facilitating the expansion of vaccine antigen-specific T-cell repertoires. Here, we report the discovery and characterization of a peptide-based class of PD1 checkpoint inhibitors, which have a potent adaptive immunity adjuvant capability for vaccines against infectious diseases. Briefly, after identifying peptides that bind to the recombinant human PD1, we screened for in vitro efficacy in reporter assays and human peripheral blood mononuclear cells (PBMC) readouts. We first found the baseline in vivo performance of the peptides in a standard mouse oncology model that demonstrated equivalent efficacy compared to mAbs against the PD1 checkpoint. Subsequently, two strategies were used to demonstrate the utility of our peptides in infectious disease indications: (1) as a therapeutic in a bacteria-induced lethal sepsis model in which our peptides were found to increase survival with enhanced bacterial clearance and increased macrophage function; and (2) as an adjuvant in combination with a prophylactic malaria vaccine in which our peptides increased T-cell immunogenicity and the protective efficacy of the vaccine. Therefore, our peptides are promising as both a therapeutic agent and a vaccine adjuvant for infectious disease with a potentially safer and more cost-effective target product profile compared to mAbs. These findings are essential for deploying a new immunomodulatory regimen in infectious disease primary and clinical care settings.


Assuntos
Doenças Transmissíveis/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Macrófagos Peritoneais/imunologia , Melanoma/imunologia , Peptídeos/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/imunologia , Adjuvantes Imunológicos , Animais , Doenças Transmissíveis/terapia , Humanos , Células Jurkat , Melanoma Experimental , Camundongos , Biblioteca de Peptídeos , Peptídeos/síntese química , Ligação Proteica , Vacinas
7.
NPJ Vaccines ; 4: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774997

RESUMO

Anthrax is a serious biological threat caused by pulmonary exposure to aerosolized spores of Bacillus anthracis. Biothrax® (anthrax vaccine adsorbed (AVA)) is the only Food and Drug Administration-licensed vaccine and requires five administrations over 12 months with annual boosting to maintain pre-exposure prophylaxis. Here we report the evaluation of a single intramuscular injection of recombinant B. anthracis-protective antigen (rPA) formulated in the DPX delivery platform. Immune responses were compared to an alum-based formulation in mice and rabbits. Serological analysis of anti-rPA immunoglobulin G and toxin neutralization activity demonstrated higher responses induced by DPX-rPA when compared to rPA in alum. DPX-rPA was compared to AVA in rabbits and non-human primates (NHPs). In both species, DPX-rPA generated responses after a single immunization, whereas AVA required two immunizations. In rabbits, single injection of DPX-rPA or two injections of AVA conferred 100% protection from anthrax challenge. In NHPs, single-dose DPX-rPA was 100% protective against challenge, whereas one animal in the two-dose AVA group and all saline administered animals succumbed to infection. DPX-rPA was minimally reactogenic in all species tested. These data indicate that DPX-rPA may offer improvement over AVA by reducing the doses needed for protective immune responses and is a promising candidate as a new-generation anthrax vaccine.

8.
J Infect Dis ; 218(3): 378-387, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29617814

RESUMO

Background: Respiratory syncytial virus infection can cause lower respiratory tract infection in older adults comparable to influenza, but no vaccines are available. Methods: This was a randomized, observer-blinded, first-in-humans study of a novel synthetic RSV antigen based on the ectodomain of the small hydrophobic glycoprotein (SHe) of RSV subgroup A, formulated with either the lipid and oil-based vaccine platform DepoVax (DPX-RSV[A]) or alum (RSV[A]-Alum), in healthy, 50-64-year-old individuals. Two dose levels (10 or 25 µg) of SHe with each formulation were compared to placebo. A booster dose was administered on day 56. Results: There was no indication that the vaccine was unsafe. Mild pain, drowsiness, and muscles aches were the most common solicited adverse events (AEs), and the frequencies of the AEs did not increase after dose 2. Robust anti-SHe-specific immune responses were demonstrated in the DPX-RSV(A) 10-µg and 25-µg groups (geometric mean titer, approximately 10-fold and 100-fold greater than that of placebo at days 56 and 236, respectively), and responses were sustained in the DPX-RSV(A) 25-µg group at day 421. Responses to the RSV(A)-Alum vaccines were very low. Conclusions: A novel antigen from the SH protein of RSV, formulated in a lipid and oil-based vaccine platform, was highly immunogenic, with sustained antigen-specific antibody responses, and had an acceptable safety profile.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/sangue , Lipídeos/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Oncogênicas de Retroviridae/imunologia , Compostos de Alúmen/administração & dosagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Voluntários Saudáveis , Humanos , Imunidade Humoral , Esquemas de Imunização , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Método Simples-Cego , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/efeitos adversos , Vacinas de Subunidades/imunologia
9.
J Biomed Sci ; 25(1): 7, 2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29374458

RESUMO

BACKGROUND: Oil emulsions are commonly used as vaccine delivery platforms to facilitate slow release of antigen by forming a depot at the injection site. Antigen is trapped in the aqueous phase and as the emulsion degrades in vivo the antigen is passively released. DepoVax™ is a unique oil based delivery system that directly suspends the vaccine components in the oil diluent that forces immune cells to actively take up components from the formulation in the absence of passive release. The aim of this study was to use magnetic resonance imaging (MRI) with additional biological markers to evaluate and understand differences in clearance between several different delivery systems used in peptide-based cancer vaccines. METHODS: C57BL/6 mice were implanted with a cervical cancer model and vaccinated 5 days post-implant with either DepoVax (DPX), a water-in-oil emulsion (w/o), a squalene oil-in-water emulsion (squal o/w) or a saponin/liposome emulsion (sap/lip) containing iron oxide-labeled targeted antigen. MRI was then used to monitor antigen clearance, the site of injection, tumour and inguinal lymph node volumes and other gross anatomical changes. HLA-A2 transgenic mice were also vaccinated to evaluate immune responses of human directed peptides. RESULTS: We demonstrated differences in antigen clearance between DPX and w/o both in regard to how quickly the antigen was cleared and the pattern in which it was cleared. We also found differences in lymph node responses between DPX and both squal o/w and sap/lip. CONCLUSIONS: These studies underline the unique mechanism of action of this clinical stage vaccine delivery system.


Assuntos
Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Animais , Vacinas Anticâncer/administração & dosagem , Sistemas de Liberação de Medicamentos , Emulsões , Feminino , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias do Colo do Útero/etiologia
10.
Magn Reson Med ; 80(1): 304-316, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29193231

RESUMO

PURPOSE: MRI cell tracking can be used to monitor immune cells involved in the immunotherapy response, providing insight into the mechanism of action, temporal progression of tumor growth, and individual potency of therapies. To evaluate whether MRI could be used to track immune cell populations in response to immunotherapy, CD8+ cytotoxic T cells, CD4+ CD25+ FoxP3+ regulatory T cells, and myeloid-derived suppressor cells were labeled with superparamagnetic iron oxide particles. METHODS: Superparamagnetic iron oxide-labeled cells were injected into mice (one cell type/mouse) implanted with a human papillomavirus-based cervical cancer model. Half of these mice were also vaccinated with DepoVaxTM (ImmunoVaccine, Inc., Halifax, Nova Scotia, Canada), a lipid-based vaccine platform that was developed to enhance the potency of peptide-based vaccines. RESULTS: MRI visualization of CD8+ cytotoxic T cells, regulatory T cells, and myeloid-derived suppressor cells was apparent 24 h post-injection, with hypointensities due to iron-labeled cells clearing approximately 72 h post-injection. Vaccination resulted in increased recruitment of CD8+ cytotoxic T cells, and decreased recruitment of myeloid-derived suppressor cells and regulatory T cells to the tumor. We also found that myeloid-derived suppressor cell and regulatory T cell recruitment were positively correlated with final tumor volume. CONCLUSION: This type of analysis can be used to noninvasively study changes in immune cell recruitment in individual mice over time, potentially allowing improved application and combination of immunotherapies. Magn Reson Med 80:304-316, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Vacinas Anticâncer/imunologia , Rastreamento de Células/métodos , Imunoterapia/métodos , Imageamento por Ressonância Magnética , Peptídeos/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Compostos Férricos/química , Fatores de Transcrição Forkhead/metabolismo , Processamento de Imagem Assistida por Computador , Sistema Imunitário , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/metabolismo , Papillomaviridae , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
11.
Hum Vaccin Immunother ; 14(1): 59-66, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28933663

RESUMO

Peptide antigens are combined with an adjuvant in order to increase immunogenicity in vivo. The immunogenicity and safety of a RSV vaccine formulated in a novel oil-based platform, DepoVax™ (DPX), was compared to an alum formulation. A peptide B cell epitope derived from RSV small hydrophobic ectodomain (SHe) served as the antigen. Both vaccines induced SHe-specific antibodies after immunization of mice. A single dose of the DPX-based formulation resulted in anti-SHe titres for up to 20 weeks. Boosting with Alum-SHe, but not with DPX-SHe, led to unexpected clinical signs such as decreased activity, cyanosis and drop in body temperature in mice but not in rabbits. The severity of adverse reactions correlated with magnitude of SHe-specific IgG immune responses and decreased complement component 3 plasma levels, indicating a type III hypersensitivity reaction. By RP-HPLC analysis, we found that only 8-20% of the antigen was found to be adsorbed to alum in vitro, indicating that this antigen is likely released systemically upon injection in vivo. Clinical signs were not observed in rabbits, indicating the response correlates with peptide dose relative to size of animal. These results suggest that peptide antigens targeted to produce B cell mediated response may result in increased incidence of type III hypersensitivity reactions when delivered in non-depot forming vaccines. The DPX formulation induced strong antibody titres to the antigen without causing adverse events, likely due to the strength of the depot in vivo, and demonstrates the potential safety and immunogenicity of this platform for B cell peptide antigens.


Assuntos
Adjuvantes Imunológicos/efeitos adversos , Epitopos de Linfócito B/imunologia , Doenças do Complexo Imune/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Adjuvantes Imunológicos/química , Compostos de Alúmen/efeitos adversos , Compostos de Alúmen/química , Animais , Preparações de Ação Retardada/efeitos adversos , Preparações de Ação Retardada/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Doenças do Complexo Imune/epidemiologia , Imunogenicidade da Vacina , Incidência , Camundongos , Óleos/efeitos adversos , Óleos/química , Coelhos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/química , Vacinação/métodos , Vacinas de Subunidades/efeitos adversos , Vacinas de Subunidades/química , Vacinas de Subunidades/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
12.
PLoS One ; 12(6): e0180073, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662082

RESUMO

Vaccines that can rapidly induce strong and robust antibody-mediated immunity could improve protection from certain infectious diseases for which current vaccine formulations are inefficient. For indications such as anthrax and influenza, antibody production in vivo is a correlate of efficacy. Toll-like receptor (TLR) agonists are frequently studied for their role as vaccine adjuvants, largely because of their ability to enhance initiation of immune responses to antigens by activating dendritic cells. However, TLRs are also expressed on B cells and may contribute to effective B cell activation and promote differentiation into antigen-specific antibody producing plasma cells in vivo. We sought to discover an adjuvant system that could be used to augment antibody responses to influenza and anthrax vaccines. We first characterized an adjuvant system in vitro which consisted of two TLR ligands, poly I:C (TLR3) and Pam3CSK4 (TLR2), by evaluating its effects on B cell activation. Each agonist enhanced B cell activation through increased expression of surface receptors, cytokine secretion and proliferation. However, when B cells were stimulated with poly I:C and Pam3CSK4 in combination, further enhancement to cell activation was observed. Using B cells isolated from knockout mice we confirmed that poly I:C and Pam3CSK4 were signaling through TLR3 and TLR2, respectively. B cells activated with Poly I:C and Pam3CSK4 displayed enhanced capacity to stimulate allogeneic CD4+ T cell activation and differentiate into antibody-producing plasma cells in vitro. Mice vaccinated with influenza or anthrax antigens formulated with poly I:C and Pam3CSK4 in DepoVax™ vaccine platform developed a rapid and strong antigen-specific serum antibody titer that persisted for at least 12 weeks after a single immunization. These results demonstrate that combinations of TLR adjuvants promote more effective B cell activation in vitro and can be used to augment antibody responses to vaccines in vivo.


Assuntos
Vacinas contra Antraz/imunologia , Anticorpos Antibacterianos/biossíntese , Anticorpos Antivirais/biossíntese , Linfócitos B/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Lipopeptídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Poli I-C/farmacologia , Animais , Linfócitos B/imunologia , Quimioterapia Combinada , Feminino , Técnicas In Vitro , Lipopeptídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Poli I-C/administração & dosagem , Linfócitos T/imunologia
13.
J Immunother Cancer ; 4: 68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777777

RESUMO

BACKGROUND: Future cancer immunotherapies will combine multiple treatments to generate functional immune responses to cancer antigens through synergistic, multi-modal mechanisms. In this study we explored the combination of three distinct immunotherapies: a class I restricted peptide-based cancer vaccine, metronomic cyclophosphamide (mCPA) and anti-PD-1 treatment in a murine tumor model expressing HPV16 E7 (C3). METHODS: Mice were implanted with C3 tumors subcutaneously. Tumor bearing mice were treated with mCPA (20 mg/kg/day PO) for seven continuous days on alternating weeks, vaccinated with HPV16 E749-57 peptide antigen formulated in the DepoVax (DPX) adjuvanting platform every second week, and administered anti-PD-1 (200 µg/dose IP) after each vaccination. Efficacy was measured by following tumor growth and survival. Immunogenicity was measured by IFN-γ ELISpot of spleen, vaccine draining lymph nodes and tumor draining lymph nodes. Tumor infiltration was measured by flow cytometry for CD8α+ peptide-specific T cells and RT-qPCR for cytotoxic proteins. The clonality of tumor infiltrating T cells was measured by TCRß sequencing using genomic DNA. RESULTS: Untreated C3 tumors had low expression of PD-L1 in vivo and anti-PD-1 therapy alone provided no protection from tumor growth. Treatment with DPX/mCPA could delay tumor growth, and tri-therapy with DPX/mCPA/anti-PD-1 provided long-term control of tumors. We found that treatment with DPX/mCPA/anti-PD-1 enhanced systemic antigen-specific immune responses detected in the spleen as determined by IFN-γ ELISpot compared to those in the DPX/mCPA group, but immune responses in tumor-draining lymph nodes were not increased. Although no increases in antigen-specific CD8α+ TILs could be detected, there was a trend for increased expression of cytotoxic genes within the tumor microenvironment as well as an increase in clonality in mice treated with DPX/mCPA/anti-PD-1 compared to those with anti-PD-1 alone or DPX/mCPA. Using a library of antigen-specific CD8α+ T cell clones, we found that antigen-specific clones were more frequently expanded in the DPX/mCPA/anti-PD-1 treated group. CONCLUSIONS: These results demonstrate how the efficacy of anti-PD-1 may be improved by combination with a potent and targeted T cell activating immune therapy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Vacinas Anticâncer/imunologia , Ciclofosfamida/administração & dosagem , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Administração Metronômica , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Evolução Clonal/efeitos dos fármacos , Evolução Clonal/imunologia , Citotoxicidade Imunológica , Modelos Animais de Doenças , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Feminino , Expressão Gênica , Humanos , Imunomodulação/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/efeitos dos fármacos , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
14.
Oncotarget ; 7(24): 35655-35669, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27232944

RESUMO

There is currently a lack of biomarkers to help properly assess novel immunotherapies at both the preclinical and clinical stages of development. Recent work done by our group indicated significant volume changes in the vaccine draining right lymph node (RLN) volumes of mice that had been vaccinated with DepoVaxTM, a lipid-based vaccine platform that was developed to enhance the potency of peptide-based vaccines. These changes in lymph node (LN) volume were unique to vaccinated mice.To better assess the potential of volumetric LN markers for multiple vaccination platforms, we evaluated 100 tumor bearing mice and assessed their response to vaccination with either a DepoVax based vaccine (DPX) or a water-in-oil emulsion (w/o), and compared them to untreated controls. MRI was used to longitudinally monitor LN and tumor volumes weekly over 4 weeks. We then evaluated changes in LN volumes occurring in response to therapy as a potential predictive biomarker for treatment success.We found that for both vaccine types, DPX and w/o, the %RLN volumetric increase over baseline and the ratio of RLN/LLN were strong predictors of successful tumor suppression (LLN is left inguinal LN). The area under the curve (AUC) was greatest, between 0.75-0.85, two (%RLN) or three (RLN/LLN) weeks post-vaccination. For optimized critical thresholds we found these biomarkers consistently had sensitivity >90% and specificity >70% indicating strong prognostic potential. Vaccination with DepoVax had a more pronounced effect on draining lymph nodes than w/o emulsion vaccines, which correlated with a higher anti-tumor activity in DPX-treated mice.


Assuntos
Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Neoplasias/terapia , Vacinação/métodos , Adjuvantes Imunológicos/química , Animais , Biomarcadores Tumorais/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/química , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Feminino , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia
15.
Oncoimmunology ; 4(8): e1026529, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405584

RESUMO

DepoVax™ is an innovative and strongly immunogenic vaccine platform. Survivin is highly expressed in many tumor types and has reported prognostic value. To generate tumor-specific immune response, a novel cancer vaccine was formulated in DepoVax platform (DPX-Survivac) using survivin HLA class I peptides. Safety and immune potency of DPX-Survivac was tested in combination with immune-modulator metronomic cyclophosphamide in ovarian cancer patients. All the patients receiving the therapy produced antigen-specific immune responses; higher dose vaccine and cyclophosphamide treatment generating significantly higher magnitude responses. Strong T cell responses were associated with differentiation of naïve T cells into central/effector memory (CM/EM) and late differentiated (LD) polyfunctional antigen-specific CD4+ and CD8+ T cells. This approach enabled rapid de novo activation/expansion of vaccine antigen-specific CD8+ T cells and provided a strong rationale for further testing to determine clinical benefits associated with this immune activation. These data represent vaccine-induced T cell activation in a clinical setting to a self-tumor antigen previously described only in animal models.

16.
Mol Ther Methods Clin Dev ; 2: 15048, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26730395

RESUMO

In the preclinical development of immunotherapy candidates, understanding the mechanism of action and determining biomarkers that accurately characterize the induced host immune responses is critical to improving their clinical interpretation. Magnetic resonance imaging (MRI) was used to evaluate in vivo changes in lymph node size in response to a peptide-based cancer vaccine therapy, formulated using DepoVax (DPX). DPX is a novel adjuvant lipid-in-oil-based formulation that facilitates enhanced immune responses by retaining antigens at the injection site for extended latencies, promoting increased potentiation of immune cells. C57BL/6 mice were implanted with C3 (HPV) tumor cells and received either DPX or control treatments, 5 days post-implantation. Complete tumor eradication occurred in DPX-vaccinated animals and large volumetric increases were observed in the vaccine-draining right inguinal lymph node (VRILN) in DPX mice, likely corresponding to increased localized immune response to the vaccine. Upon evaluating the relative measure of vaccine-potentiated immune activation to tumor-induced immune response (VRILN/VLILN), receiver-operating characteristic (ROC) curves revealed an area under the curve (AUC) of 0.90 (±0.07), indicating high specificity and sensitivity as a predictive biomarker of vaccine efficacy. We have determined that for this tumor model, early MRI lymph node volumetric changes are predictive of depot immunotherapeutic success.

17.
Vaccine ; 32(51): 6956-6962, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25444822

RESUMO

Immunotherapies, including peptide-based vaccines, are a growing area of cancer research, and understanding their mechanism of action is crucial for their continued development and clinical application. Exploring the biodistribution of vaccine components may be key to understanding this action. This work used magnetic resonance imaging (MRI) to characterize the in vivo biodistribution of the antigen and oil substrate of the vaccine delivery system known as DepoVax(TM). DepoVax uses a novel adjuvanted lipid-in-oil based formulation to solubilise antigens and promote a depot effect. In this study, antigen or oil were tagged with superparamagnetic iron oxide (SPIO), making them visible on MR images. This enables tracking of individual vaccine components to determine changes in biodistribution. Mice were injected with SPIO-labeled antigen or SPIO-labeled oil, and imaged to examine clearance of labeled components from the vaccine site. The SPIO-antigen was steadily cleared, with nearly half cleared within two months post-vaccination. In contrast, the SPIO-oil remained relatively unchanged. The biodistribution of the SPIO-antigen component within the vaccine site was heterogeneous, indicating the presence of active clearance mechanisms, rather than passive diffusion or drainage. Mice injected with SPIO-antigen also showed MRI contrast for several weeks post-vaccination in the draining inguinal lymph node. These results indicate that MRI can visualize the in vivo longitudinal biodistribution of vaccine components. The sustained clearance is consistent with antigen up-take and trafficking by immune cells, leading to accumulation in the draining lymph node, which corresponds to the sustained immune responses and reduced tumor burden observed in vaccinated mice.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Vacinas/administração & dosagem , Vacinas/farmacocinética , Animais , Feminino , Compostos Férricos/análise , Humanos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL
18.
Oncoimmunology ; 3(8): e953407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25960932

RESUMO

In clinical trials, metronomic cyclophosphamide (CPA) is increasingly being combined with vaccines to reduce tumor-induced immune suppression. Previous strategies to modulate the immune system during vaccination have involved continuous administration of low dose chemotherapy, studies that have posed unique considerations for clinical trial design. Here, we evaluated metronomic CPA in combination with a peptide vaccine targeting HPV16E7 in an HPV16-induced tumor model, focusing on the cytotoxic T-cell response and timing of low dose metronomic CPA (mCPA) treatment relative to vaccination. Mice bearing C3 tumors were given metronomic CPA on alternating weeks in combination with immunization with a DepoVax vaccine containing HPV16E749-57 peptide antigen every 3 weeks. Only the combination therapy provided significant long-term control of tumor growth. The efficacy of the vaccine was uncompromised if given at the beginning or end of a cycle of metronomic CPA. Metronomic CPA had a pronounced lymphodepletive effect on the vaccine draining lymph node, yet did not reduce the development of antigen-specific CD8+ T cells induced by vaccination. This enrichment correlated with increased cytotoxic activity in the spleen and increased expression of cytotoxic gene signatures in the tumor. Immunity could be passively transferred through CD8+ T cells isolated from tumor-bearing mice treated with the combinatorial treatment regimen. A comprehensive survey of splenocytes indicated that metronomic CPA, in the absence of vaccination, induced transient lymphodepletion marked by a selective expansion of myeloid-derived suppressor cells. These results provide important insights into the multiple mechanisms of metronomic CPA induced immune modulation in the context of a peptide cancer vaccine that may be translated into more effective clinical trial designs.

19.
J Transl Med ; 10: 156, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22862954

RESUMO

BACKGROUND: DepoVax is a novel non-emulsion depot-forming vaccine platform with the capacity to significantly enhance the immunogenicity of peptide cancer antigens. Naturally processed HLA-A2 restricted peptides presented by breast, ovarian and prostate cancer cells were used as antigens to create a therapeutic cancer vaccine, DPX-0907. METHODS: A phase I clinical study was designed to examine the safety and immune activating potential of DPX-0907 in advanced stage breast, ovarian and prostate cancer patients. A total of 23 late stage cancer patients were recruited and were divided into two dose/volume cohorts in a three immunization protocol. RESULTS: DPX-0907 was shown to be safe with injection site reactions being the most commonly reported adverse event. All breast cancer patients (3/3), most of ovarian (5/6) and one third of prostate (3/9) cancer patients exhibited detectable immune responses, resulting in a 61% immunological response rate. Immune responses were generally observed in patients with better disease control after their last prior treatment. Antigen-specific responses were detected in 73% of immune responders (44% of evaluable patients) after the first vaccination. In 83% of immune responders (50% of evaluable patients), peptide-specific T cell responses were detected at ≥2 time points post vaccination with 64% of the responders (39% of evaluable patients) showing evidence of immune persistence. Immune monitoring also demonstrated the generation of antigen-specific T cell memory with the ability to secrete multiple Type 1 cytokines. CONCLUSIONS: The novel DepoVax formulation promotes multifunctional effector memory responses to peptide-based tumor associated antigens. The data supports the capacity of DPX-0907 to elicit Type-1 biased immune responses, warranting further clinical development of the vaccine. This study underscores the importance of applying vaccines in clinical settings in which patients are more likely to be immune competent. TRIAL REGISTRATION: ClinicalTrials.gov NCT01095848.


Assuntos
Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias da Próstata/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Mol Ther ; 20(6): 1148-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22273579

RESUMO

Replicating viruses for the treatment of cancer have a number of advantages over traditional therapeutic modalities. They are highly targeted, self-amplifying, and have the added potential to act as both gene-therapy delivery vehicles and oncolytic agents. Parapoxvirus ovis or Orf virus (ORFV) is the prototypic species of the Parapoxvirus genus, causing a benign disease in its natural ungulate host. ORFV possesses a number of unique properties that make it an ideal viral backbone for the development of a cancer therapeutic: it is safe in humans, has the ability to cause repeat infections even in the presence of antibody, and it induces a potent T(h)-1-dominated immune response. Here, we show that live replicating ORFV induces an antitumor immune response in multiple syngeneic mouse models of cancer that is mediated largely by the potent activation of both cytokine-secreting, and tumoricidal natural killer (NK) cells. We have also highlighted the clinical potential of the virus by demonstration of human cancer cell oncolysis including efficacy in an A549 xenograft model of cancer.


Assuntos
Vetores Genéticos/administração & dosagem , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Vírus do Orf/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética , Vetores Genéticos/efeitos adversos , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/genética , Vírus Oncolíticos/genética , Vírus do Orf/genética , Baço/imunologia , Baço/metabolismo , Carga Tumoral , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...